

UNIVERSITY OF KARACHI

Self-Assessment Report

Institute of Space and Planetary Astrophysics University of Karachi

Submitted to

Quality Enhancement Cell University of Karachi

ASSESSMENT TEAM:

Prof. Dr. Muhammad Jawed Iqbal Dr. Mirza Jawwad Baig

PROGRAMME TEAM

CONTENTS

Criterion 1- Programme Mission, Objectives and Outcomes		
	Introduction	
Standard 1-1	Programme Mission and Objectives	
Standard 1-2	rogramme Outcomes	
Standard 1-3	Overall Performance Using Quantifiable Measures	
Standard 1-4	Students Enrolment	

Criterion 2- Curriculum Design and Organization				
	Programme of studies offered			
Standard 2-1	Correlation of Courses with Objectives			
Standard 2-2	Theory, Problem Analysis/ Solution and Design in Programme			
Standard 2-3	Mathematics & Basic Sciences Requirements			
Standard 2-4	Major requirements as specified by Acceleration Body			
Standard 2-5	Maths and Basic Sciences, Engineering Topics, General Education.			
Standard 2-6	Information Technology Content Integration Throughout the Programme			
Standard 2-7	Communication Skills (Oral & Written)			

Criterion 3- Laboratories and Computing Facilities		
	Laboratory and Computing Facilities	
Standard 3-1	Lab Manuals/ Documentation / Instructions	
Standard 3-2	Adequate Support Personnel for labs	
Standard 3-3	Adequate computing infrastructure and facilities	

Criterion 4 Student Support and Advising				
Standard 4-1	Effective Faculty / Student Interaction			
Standard 4-2	Professional Advising and Counseling			
Standard 4-3	Professional Advising and Counseling			

Criterion 5- Process Control		Page #
Standard 5-1	5-1 Admission Process	
Standard 5-2	Registration and Student	
Standard 5-3	Faculty Recruitment and Retention Process	
Standard 5-4	Effective Teaching and Learning Process	

Standard 5-5	Programme requirements completion process	

Criterion 6- Faculty		
Standard 6-1 Programme Faculty Qualifications and Number		
Standard 6-2 Current Faculty, Scholarly activities and development		
Standard 6-3	Faculty motivation and Job satisfaction	

Criterion 7- Institutional Facilities		
Standard 7-1	New Trends in Learning	
Standard 7-2	Library Collections & Staff	
Standard 7-3	Class rooms & Offices Adequacy	

Criterion 8- Institutional Support		
Standard 8-1 Support & Financial Resources		
Standard 8-2	Standard 8-2 Number & Quality of GSs, RAs, & Ph.D. Students	
Standard 8-3 Financial Support for Library, Labs & Computing Facilities		

Faculty CVs &SURVEY'S RESULTS		Page #
	Faculty CVs	
Teacher's &Course Evaluation Survey		

INTRODUCTION

We are now in an era where humanity is reaching to the end points of our solar system through probes like Voyager 1, sent decades ago by NASA with messages from our civilization. Humanity is also endeavoring to colonize other planets through multinational projects. We are also looking deepest into the space for new stars, galaxies and even to some of the earliest times after the creation of our universe through cosmic microwave background probes like Planck.

Advancements in space science and technology will not only help in discovering new things about our universe but through scientific capacity building, technical human resource development and spin-off technologies, we can see some real economic and social development. For instance, Space Technology is being used in many fields such as for planning of urban development, monitoring natural disasters and so on.

The Institute of Space and Planetary Astrophysics (ISPA) was established as an autonomous Research Institute of the University of Karachi in 1994 for producing human resource to cater to the needs related to the field of Space Science and Technology via teaching and research. This almost two-decade long journey of ISPA is a modest attempt at evolving practices which reflect a pursuit of the "Scientific Method" towards the solution of the 'indigenous' problems of the contemporary Pakistan as also global society.

ISPA has collaboration with Pakistan Space Agency SUPARCO, Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Australia and School of Marine and Atmospheric Sciences, Stony Brook University, NY, USA. The Journal of GeoSpace Science is also being published by ISPA. The journal covers a wide range of topics related to Geospace sciences.

Professor Dr. Muhammad Jawed Iqbal Director Institute of Space and Planetary Astrophysics

CRITERION-1

PROGRAMMEMISSION, OBJECTIVES AND OUTCOMES

Criterion-1: Programme Mission, Objectives and Outcomes

Institute's Vision

The Institute aims at producing human capital to cater to the needs related to the field of Space Science and Technology via teaching and research.

Institutional Mission

The principal aim of the Institute is to provide education in Astrophysics, Atmospheric Physics, Remote Sensing and GIS, Satellite Orbitography and Communication, and Aerospace Studies for developing indigenous research and R&D capability.

Programme Mission (Undergraduate Programmein Space Science and Technology)

The Institute offers admission in the B.Sc. (Hons.) and M.Sc. programmes in the field of Space Science and Technology. Among other things, these programmes help to provide a basic background to understand the linkage between Space Science, Engineering and Technology. Our academic programmes are multidisciplinary ones which include teaching of Electronics, Digital Signal Processing, Communication Systems, Satellite Communication, Global Navigation Satellite Systems, Aerospace Studies, Astrophysics, Atmospheric Physics and Remote Sensing and GIS.

Programme Objectives:

The objective of undergraduate programs is to produce under-graduates with

- ➤ A broad understanding of fundamental courses of Space Science (Astronomy, Astrophysics, Atmospheric Science, Gravitation Physics, etc.)
- Knowledge of Space Technology
- > Computational Skills (MATLAB, C-language, Python, ARC-GIS, Astronomical packages, etc.)

Table: Programme Objectives Assessment

S. No.	Objectives	How When	When	nen Improvement	Improvement
		Measured	Measured	Identified	Made
	A broad understanding of fundamental courses of Space Science	Conducting Semester Exams, giving Assignment & Projects	During the semester		
	Knowledge of Space Technology	Conducting Semester Exams, giving Assignment & Projects	During the semester		
	Computational Skills	Conducting Semester Exams, giving Assignment & Projects	During the semester		

Standard 1-2:The programme must have documented outcomes for graduating students. It must be demonstrated that the outcomes support the programme objectives and that graduating students are capable of performing these outcomes.

PROGRAMME OUTCOMES

After completion of the <u>B.Sc. (Hons) & M.Sc</u> in Space Science and Technology, the students shall be able to:

- understand the basic knowledge of Space Science (Astronomy, Atmospheric Science, Aero-Space Science, Satellite Communication Systems, Remote Sensing & GIS etc.)
- ➤ Know how to use / operate Space Technology equipment e (e.g. Basic Electronics Equipment, Communication Systems, Air flow bench, Telescope, etc.)
- use C-language, MATLAB, Python, ERDAS, Arc-GIS for computational work

Standard 1-3: The results of programme's assessment and the extent to which they are used improve the programme must be documented.

a) Strengths and Weaknesses of the Programme

i) Strengths:

- Highly Qualified Faculty
- > Applied Curriculums
- > Astronomical Observatory
- Basic Electronics Lab

ii) Weaknesses:

- ➤ We have shortage of teaching staff and non-teaching staff
- > We need some latest equipment to conduct lab classes.

b) Future Development Plans:

- Development of Satellite Lab
- Development of Aero-Space Lab
- Radio Astronomy Lab

Standard 1-4: The department must assess its overall performance periodically.

a) Student Enrolment

S. No	Year	Degree
1	2013	
2	2014	
3	2015	

- b) Student/Faculty Ratio
- 1:50
- c) i) Time for Bachelors
 - ii) Time for M.S
 - iii) Time for Ph.D
- d) The average student grade point (CGPA)
- e) Student/Faculty Satisfaction

CRITERION-2

CURRICULUM DESIGN AND ORGANIZATION

Criterion-2 Curriculum Design and Organization B.Sc. (Honours) Credit Hours:

Minimum credit hours earned by a student shall be 96 for the award of B.Sc. (Hons.)

degree in Space Science and Technology.

S.	Semester	Major	Minor Courses	Compulsory	Credit
No.		Courses		Courses	Hours
01	First Semester	02	02	01	15
			(Physics &		
			Math)		
02	Second	02	02	01	15
	Semester		(Physics &		
			Math)		
03	Third Semester	02	02	01	15
			(Physics &		
			Math)		
04	Fourth	02	02	01	15
	Semester		(Physics &		
			Math)		
05	Fifth Semester	06			18
06	Sixth Semester	06			18
			Total Credit		96
	Hours				

M.Sc. Credit Hours:

Minimum credit hours earned by a student shall be 72 for the award of M.Sc. (Final) degree in Space Science.

S.	Semester	Major	Minor Courses	Compulsory	Credit
No.		Courses		Courses	Hours
01	First Semester	06		1	18
02	Second Semester	06			18
03	ThirdSemester	03	03	18	18
04	Fourth Semester	03	03	18	18
			Total Credit		72
	Hours				

Programme of Studies offered

Year / Semester wise Scheme of Studies of B. Sc. (Hons) in Space Science & TechnologyProgramme

1st Year (Semester I)

S. No	Course Code	Course Title	
1	SST 301	Astronomy (2+1)	
2	SST 311	Introduction to Computer Programming (2+1)	
3	PHY 301	Mechanics & Properties of Matter (subsidiary) (2+1)	
4	Math 301	Algebra (subsidiary) (3+0)	
5		Compulsory-I (3+0)	

1st Year (Semester II)

S. No	Course Code	Course Title	
1	SST 302	Introduction to Astrophysics (3+0)	
2	SST 312	MATLAB programming (2+1)	
3	PHY 302	Waves, Oscillation & Thermodynamics (subsidiary) (2+1)	
4	Math 302	Calculus & Differential Equations (subsidiary) (3+0)	
5		Compulsory-II (3+0)	

2nd Year (Semester III)

S. No	Course Code	Course Title
1	SST 401	Foundation of Aerospace Science (3+0)
2	SST 411	Statistical Analysis (2+1)
3	PHY 401	Electricity & Magnetism (subsidiary) (2+1)
4	Math 401	Geometry & Vector Analysis (subsidiary) (3+0)
5		Compulsory-III (3+0)

2nd Year (Semester IV)

S. No	Course Code	Course Title	
1	SST 402	Foundation of Remote Sensing (2+1)	
2	SST 412	Meteorology (3+0)	
3	PHY 402	Modern Physics & Electronics (subsidiary) (2+1)	
4	Math 402	Differential Equations (3+0)	
5		Compulsory-IV (3+0)	

Course Structure of M. Sc. (Previous) in Space Science & Technology

3rd Year (Semester V)

S. No	Course Code	Course Title	
1	SST 501	Classical Mechanics (3+0)	
2	SST 503	Orbital Mechanics (3+0)	
3	SST 505	Signals & Systems (3+0)	
4	SST 507	Mathematical Physics (3+0)	
5	SST 509	Analog & Digital Electronics (2+1)	
6	SST 511	Numerical Computing (2+1)	

3rd Year (Semester VI)

S. No	Course Code	Course Title	
1	SST 502	Mathematical Astronomy (3+0)	
2	SST 504	Space Flight Dynamics (3+0)	
3	SST 506	Digital Signal Processing (2+1)	
4	SST 508	Introduction to Database (2+1)	
5	SST 510	Geographical Information Science (2+1)	
6	SST 512	Communication Systems (3+0)	

4th Year (Semester VII)

S. No	Course Code	Course Title
1	SST 601	Gravitation Physics (3+0)
2	SST 603	Satellite Communication (3+0)
3	SST 605	Fluid Mechanics (2+1)
4	Optional	
	Subject-I	
5	Optional	
	Subject-II	
6	Optional	
	Subject-III	

4th Year (Semester VIII)

S. No	Course Code	Course Title
1	SST 602	Quantum Mechanics (3+0)
2	SST 604	Solar and Ionospheric Physics (3+0)
3	SST 606	Introduction of Space Plasma (3+0)
4	Optional	
	Subject-I	
5	Optional	
	Subject-II	
6	Optional	
	Subject-III	

Module 1: Computational Astronomy & Astrophysics

Module 2: Satellite Communication

Module 3: Aerospace Science

Module 4: Atmospheric Science

Module 5: Remote Sensing & GIS

Module 1: Computational Astronomy & Astrophysics

Six optional courses are required to be taken during 7th and 8th semester, three courses from each group.

Group A:

SST 611: Computational Fluid Dynamics (2+1)

SST 613: Experimental Astronomy (1+2)

SST 615: Radio Astronomy (3+0)

SST 617: Modern Astrophysical Techniques (3+0)

SST 619: High Performance Computing (2+1)

SST 661: Astronomical Spectroscopy (3+0)

SST 663: Research Methodology

SST 680: Thesis (0+6)

Group B:

SST 612: Stellar Structure and Evolution (3+0)

SST 614: Galaxies and Universe (3+0)

SST 616: Cosmology (3+0)

SST 618: Celestial Mechanics (3+0)

SST 620: Statistical Inference & Data Mining (2+1)

SST 682: Project (0+3)

Module 2: Satellite Communication

Six optional courses are required to be taken during 7th and 8th semester, three courses from each group.

Group A:

SST 621: Antennas and Radio Wave Propagation (3+0)

SST 623: Wireless Communication (3+0)

SST 625: GNSS-I (3+0)

SST 627: Introduction to Robotics: Mechanics & Control (3+0)

SST 629: Data Communication (3+0)

SST 663: Research Methodology

SST 680: Thesis (0+6)

Group B:

SST 622: Digital Communication (3+0)

SST 624: Fiber Optics Communication (3+0)

SST 626: GNSS-II (3+0)

SST 628: Automation & Robotics (3+0)

SST 630: Small Satellite Engineering and Applications

SST 620: Statistical Inference & Data Mining (2+1)

SST 682: Project (0+3)

Module 3: Aerospace Science

Six optional courses are required to be taken during 7th and 8th semester, three courses from each group.

Group A:

SST 631: Aerodynamics(3+0)

SST 633: Propulsion and Power Systems (3+0)

SST 635: Mechanics of Materials (3+0)

SST 637: Guidance and Navigation of Aerospace Vehicles (3+0)

SST 639: Nanotechnology and Nanomaterials (3+0)

SST 663: Research Methodology

SST 680: Thesis (0+6)

Group B:

SST 632: Aerospace Vehicle Design (3+0)

SST 634: Control Systems (3+0)

SST 636: Navigation & Space Instrumentation (3+0)

SST 638: Fibers and Textile in Aerospace Application (3+0)

SST 682: Project (0+3)

Module 4: Atmospheric Science

Six optional courses are required to be taken during 7th and 8th semester, three courses from each group.

Group A:

SST 641: Atmospheric Science(3+0) SST 643: Ionospheric Physics (3+0)

- SST 645: Fundamentals of Oceanography (3+0)
- SST 647: Renewable Energy Resources (3+0)
- SST 649: Radiations and Earth Biosphere (3+0)
- SST 663: Research Methodology
- SST 680: Thesis (0+6)

Group B:

- SST 642: Atmospheric Dynamics (3+0)
- SST 644: Environmental Science (2+1)
- SST 646: Ionospheric Communication (3+0)
- SST 648: Physical Oceanography (2+1)
- SST 620: Statistical Inference & Data Mining (2+1)
- SST 682: Project (0+3)

Module 5: Remote Sensing and GIS

Six optional courses are required to be taken during 7th and 8th semester, three courses from each group.

Group A:

- SST 651:Advanced GIS and Spatial Analysis (2+1)
- SST 653:Spatial Decision Support System(3+0)
- SST 655: Enterprise GIS (3+0)
- SST 657: Cartography and Geo-visualization (2+1)
- SST 663: Research Methodology
- SST 680: Thesis (0+6)

Group B:

- SST-652: Advanced Remote Sensing (2+1)
- SST-654: Spatial Database and GIS Programming (2+1)
- SST-656: GIS Project Management (3+0)
- SST 620: Statistical Inference & Data Mining (2+1)
- SST 682: Project (0+3)

Standard 2-1: The Curriculum must be consistent and support the programme's documented objectives

The following table manifests how the programme content (Courses) meets the Programme Objectives.

Courses	_	Progra		
	1	2	3	4
Major Courses				
Elective Courses				
Practical (Field and				
Lab)				
Thesis/Dissertation				

Standard 2-2: Theoretical background, problem analysis and solution design must be stressed within the programme's core material.

The following table indicates the elements covered in core courses:

Elements	Courses
i) Theoretical Background	All courses offered by the Department
ii) Problem Analysis	All courses of the Department
	Elective Courses
	Internships/Thesis/Dissertation
iii) Solution Design	All courses of the Department
	Elective Courses
	Internships/Thesis/Dissertation

Standard 2-3: The curriculum must satisfy the core requirements for the programme, as specified by the respective accreditation body.

&

Standard 2-4: The curriculum must satisfy the major requirements for the programme, as specified by the respective accreditation body/council.

The curriculum adopted by Institute of Space & Planetary Astrophysics (ISPA) has been approved by Academic Council, competent authority and statutory bodies of University of Karachi.

2-5: The curriculum must satisfy the general education, arts and other discipline requirements for the Programme as specified by the accreditation body.

Standard 2-6: Information technology component of the curriculum must be integrated throughout the programme.

Following courses cover Information Technology component of the Curriculum of B.Sc (Hons.) & M.Sc. Programme.

- SST 311: Introduction to Computer Programming (2+1)
- SST 312: MATLAB programming (2+1)
- SST 508: Introduction to Database (2+1)

Standard 2-7: Oral and written communication skills of the student must be developed and applied in the programme.

In every semester there are such courses that requires every student to give full standalone presentation in the class. This helps students to gain confidence to present their research in most appropriate manner and also to conduct independent research.

CRITERION-3

LABORATORY AND COMPUTING FACILITIES

CITERION-3:	Laboratory and Computing Facilities
Laboratory Fa	cilities
	A Observatory nospheric Lab Lab
Computer Faci	lities
(A) Co	omputer Labs
Internet Facilit	у
Internet facilit	y is compromised. It is available off-n-on.
	Laboratory manuals/ documentation instruction for experiments must be available and ble to faculty and students
Standard 3-2: laboratories.	There must be adequate support personnel for instruction and maintaining the
A request has	been made to university to increase number of laboratory staff.

Standard 3-3: The University computing infrastructure and facilities must be adequate to support programme's objectives

i) Computing Facilities

We do lack some physics practical instruments required in seventh and eight semester of our space science under graduation programme.

We are also in need of more personal computer to meet the student-computer ratio which is at present 4:1.

ii)Multimedia

We do have two multimedia at our facility

iii) Website

We do have our website linked with University of Karachi Website http://www.uok.edu.pk
As Institute of Space and Planetary Astrophysics (ISPA)

iv) Internet

CRITERION-4

STUDENT SUPPORT AND ADVISING

Criterion-4 Student Support and Advising

The Institute have satisfactory support for students to complete the programme according to schedule and the students have ample opportunity to interact with their teachers of respective courses to receive timely advice about program requirements and career development.

Standard 4-1: Courses must have been offered with sufficient frequency and number for students to complete the programme in a timely manner.

Program	Classes per Week	Practical Classes pe
		Week
B.Sc. (Hons.) & M. Sc.	Three lectures per week for 3+0 course. Two lectures per week for 2+1 course.	Practical sessions of three hours per week for courses which include practical.

Standard 4-2: Course in the major must be structured to ensure effective interaction between students, faculty and teaching assistants.

Course allocation is made in the meeting of the faculty members. There is also provision for Tutorial Classes for greater interaction between students and teachers.

Standard 4-3: Guidance on how to complete the programme must be available to all students and access to academic advising must be available to make course decisions and career choices

- The Director of the Institute nominates a faculty member as 'Students Advisor' who is available to all students for course decision and career choices. The Student Advisor and the Director help the students by providing information regarding career opportunities available for them.
- The Director places on the Notice Board the Call for papers for different related conferences, opportunities of job, membership in technical and professional societies as and when received.

CRITERION-5

PROCESS CONTROL

Criterion-5: Process Control

Standard 5-1: The process by which students are admitted to the programme must be based on quantitative and qualitative criteria and clearly documented. This process must be periodically evaluated to ensure that it is meeting its objectives.

Eligibility for Admission to B.Sc. (Hons):

- Intermediate Science with Physics and Mathematics or equivalent
- D.A.E. (Electronics, Mechanical, Electrical, Radio, TV, Telecommunication, Computer Science, IT)

Eligibility for Admission to M.Sc.:

The students of the following fields are eligible for admission in M.Sc. (Space Science):

- B.Sc. (Pass) with Physics and Mathematics
- B.S. (2nd Year) with Physics and Mathematics

Standard 5-2: The process by which students are registered in the programme and monitoring of students progress to ensure timely completion of the programme must be documented. This process must be periodically evaluated to ensure that it is meeting its objectives.

Courses are completed timely; Monitoring procedures for students are documented regularly. Regular teaching staff is held meetings. Additional classes are adjusted, immediately for any unscheduled closure. Midterm tests are conducted during 8th week. Half of the course should be covered by mid term test.

Standard 5-3: The process of recruiting and retaining highly qualified faculty members must be in place and clearly documented. Also processes and procedures for faculty evaluation, promotion must be consistent with institutional mission statement. These processes must be periodically evaluated to ensure that it is meeting with its objectives.

HEC rules with approval by the University Syndicate are applied for appointment.

Teachers are encouraged to enhance their qualifications.

Appointments/ Promotion Procedure

Basic Pay Scale (BPS)

Appointments are based on HEC rules given below.

a. Lecturer (BPS- 18):

Minimum Qualification

Bachelor's Degree (first Class) in the relevant field with no 3rd division in the Academic Career from HEC recognized University/Institution. During the next two years (i.e. until June 30th, 2008) if no candidate is available without 3rd division in the academic record, then the University may forward the case for appointment of a selected candidate to the HEC for consideration and approval.

No experience required

b. Assistant Professor (BPS-19):

Minimum Qualification

Ph.D. in the relevant field from HEC recognized University/Institution, No experience required. OR

Master's Degree (foreign) or M.Phil. or equivalent degree in the relevant field after 18 years of education as determined by the HEC in the subject from HEC recognized University/Institutions, with 4 years teaching/research experience in a recognized university or a postgraduate Institution in National or International Organization.

c. Associate Professor (BPS- 20)

Minimum Qualification

Ph.D. in relevant field from HEC recognized University / Institution.

Experience

10-years teaching / research in HEC recognized University or a Postgraduate Institution or Professional Experience in the relevant field in a National or International Organization.

OR

5-years post Ph.D. teaching/research experience in HEC recognized University or a post-graduate Institution or professional experience in the relevant field in a National or International Organization.

Minimum Number of Publications

10 research publications (with at least 2 publications in last 5 years) in internationally abstract Journals recognized by the HEC.

d. Professor (BPS-21)

Minimum Qualification

Ph.D. from HEC recognized Institution in relevant field.

Experience

15-years teaching / research experience in HEC recognized University or post-graduate Institution or professional experience in the relevant field in a National or International Organization.

OR

10-years post-Ph.D. teaching/research experience in a recognized University or a post post-graduate Institution or professional experience in the relevant field in a National or International Organization.

Minimum Number of Publications

15 research publications in internationally abstracted Journals recognized by the HEC. PEC Registration is essential for all appointments.

Basis for Appointments / Promotions (under tenure track system)

Four main areas where a candidate is evaluated for Tenure Track Scheme;

- Teaching
- Research
- Service
- Personal Characteristics

General Criteria for Appointment on TTS

All faculty members in any discipline are eligible to apply for appointment provided they fulfill the following minimum eligibility conditions;

Assistant Professor Minimum

Oualification

PhD from a recognized University with excellent communication/presentation skills.

Associate Professor Minimum

Oualification

PhD with 6 years post - PhD teaching / research experience in a recognized University. Minimum Number of Publications

10 research articles published in journals having impact factor. **c. Professor:** Minimum Qualification

PhD with 11 years post-PhD teaching / research experience from a recognized University.

Minimum Number of Publications:

15 research articles published in journals having impact factor.

Standard 5-4: The process and procedure used to ensure that teaching and delivery of course material to the students emphasizes active learning and that course learning outcomes are met. The process must be periodically evaluated to ensure that it is meeting its objectives.

The methodology to ensure teaching and delivery of course material is as follows:

- a. Schedule/ time table is followed by all faculty members
- b. Director of the Institute regularly gets feedback from the students during the semester.

Standard 5-5: The process that ensures that graduates have completed the requirements of the programme must be based on standards, effective and clearly documented procedures. This process must be periodically evaluated to ensure that it is meeting its objectives.

- a) The department ensures that the students are punctual and fulfill the attendance requirement i.e. 75%.
- b) Promotions to the next year is restricted to only those who have cleared more than 80% courses.
- c) Exams by the students are regularly held.

CRITERION-6

FACULTY

Criterion-6 Faculty

The faculty members of the Institute makes harmonies combination of highly experienced people in different domains of space science and highly experienced teachers having the necessary technical depth to support the program. Teachers attempt to cover the curriculum adequately and in case of need conduct extra classes

Standard 6-1: There must be enough full time faculty who are committed to the programme to provide adequate coverage of the programme areas / courses with continuity and stability. The interest of all faculty members must be sufficient to teach all courses, plan, modify and update courses. The majority must hold a Ph.D. degree in the discipline.

The Institute is currently having the services of 6 regular faculty members and 4 full-time cooperative teachers. Three members are Ph.D. and one is M. Phil and two are enrolled in M. Phil.

Standard 6-2: All faculty members must remain current in the discipline and sufficient time must be provided for scholarly activities and professional development. Also, effective programmes for faculty development must be in place.

At the institute there is a regular annual event named as "World Space Week". In this a two day National Conference is arranged in some current topic related to space science and its application. The faculty members are encouraged to participate in this annual regular event which is there since 2012.

Standard 6-3: All faculty members should be motivated and have job satisfaction to excel in their profession.

To help the faculty of the Institute in their progress to excel in their profession, an effort is made to implement following strategies:

- i) The institute ensures fair, timely selection, appointment/ promotion as per HEC criteria. Posts have been advertised and shall be fulfilled through the Selection Board shortly.
- ii) Good working environment exists for teaching and innovative technology programmes.

CRITERION-7

INSTITUTIONAL FACILITIES

Criterion-7 Institutional Facilities

Standard 7-1: The Institution must have the infrastructure to support new trends in learning such as Elearning.

a) Seminar library and Internet Facility

Seminar library has around 500 books .Effort is made to acquire latest books. Subscription to at least four international level space science journals is required. The institute has inadequate internet facility which needs to b improved.

b) Main Library

Faculty members and students of the institute are allowed to use the main Library which has extended working hours. The main library provides the following services;

- i. Course books
- ii. Digital libraryhaving access to journals and E-books

Standard 7-2: The library must possess on up-to-date technical collection relevant to the programme and must be adequately staffed with professional personnel.

New books are regularly purchased. The seminar librarian holds Masters of Library Science (M.L.S) degree.

Standard 7-3: Class rooms must be adequately equipped and offices must be adequate to enable faculty to carry out their responsibility.

Classrooms

Teachers are required to take extra classes in order to get the course completions. Teachers have access to overhead projectors and multimedia.

The institute faces acute space shortages in taking makeup classes.

Faculty Offices

The institute is short of space to adequately accommodate its faculty and administrative staff. A separate building for department is required.

CRITERION-8

INSTITUTIONAL SUPPORT

Criterion-8 Institutional Support

The institution's support for the program is sufficient enough to provide an environment in which the program can achieve its objectives and retain its strength. However, financial resources are required to meet the programme's objectives.

Standard 8-1: There must be sufficient support and financial resources to attract and retain high quality faculty and provide the means for them to maintain competence as teacher and scholars.

HEC rules may be made more attractive for highly qualified professional teachers.

Standard 8-2: There must be an adequate number of high quality graduate students, research assistants and Ph.D. Students

Degree Programme	Years				
	2012	2013	2014		
B.S					
M.S					
Ph.D					
Research/ Teaching Assistants					

Student/Faculty Ratio (for the last three years)

Max- 30:1, Present- 30:1

Standard 8-3: Financial resources must be provided to acquire and maintain library holding, laboratories and computing facilities.

The University of Karachi provides financial resources to maintain library and computing facilities. The institute, however, is not having the separate fund of its own to maintain and

upgrade its library and computing facilities. HEC is also requested to provide additional financial resources for further strengthening of the institute of Space and Planetary Astrophysics (ISPA)

Faculty CVs

Faculty Members of Institute of Space & Planetary Astrophysics (ISPA)- 2017

	Designation	Joining Date	Details of Qualification				Experience
Name			Degree	Year	Institutio n	Specialization	Teaching (Total) Years
1.Muhammed Jawed Iqbal	Director & Professor	Feb 2013	Ph.D M.Phil	2006 1990	Uok Uok	Simulation, Gravitation, Atmospherics	20 (20)
2.Mirza Jawwad Baig	Assistant Professor	April 2012	Ph.D M.Phil	2015 2006	Uok Uok	Computer Simulation, Atmospherics	5.5 (18)
3.NaeemSadiq	Assistant Professor		Ph.D M.Phil				
4. Fayyaz-ur-Rasheed	Lecturer						
5.Muhammad Anas Qureshi	Lecturer						
6.Muhammad Saleem Khan	Lecturer						

Survey's Results